skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khadivi, Shahram"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper introduces our Diversity Advanced Actor-Critic reinforcement learning (A2C) framework (DAAC) to improve the generalization and accuracy of Natural Language Processing (NLP). We show that the diversification of training samples alleviates overfitting and improves model generalization and accuracy. We quantify diversity on a set of samples using the max dispersion, convex hull volume, and graph entropy based on sentence embeddings in high-dimensional metric space. We also introduce A2C to select such a diversified training subset efficiently. Our experiments achieve up to +23.8 accuracy increase (38.0{\%} relatively) in sentiment analysis, -44.7 perplexity decrease (37.9{\%} relatively) in language modeling, and consistent improvements in named entity recognition over various domains. In particular, our method outperforms both domain adaptation and generalization baselines without using any target domain knowledge. 
    more » « less